Accessing Existing Distributed Science Archives as RDF Models

Alasdair J G Gray¹ Norman Gray² Iadh Ounis¹

¹Computing Science, University of Glasgow ²Physics and Astronomy, University of Leicester

Outline

- Motivating science problems
- A data integration approach
- RDF and SPARQL
- Extracting scientific data
- Performance results
- Conclusions

Searching for Brown Dwarfs

- Data sets:
 - Near Infrared, 2MASS/UK Infrared Deep Sky Survey
 - Optical, APMCAT/Sloan Digital Sky Survey
- Complex colour/motion selection criteria
- Similar problems
 - Halo White Dwarfs

Deep Field Surveys

- Observations in multiple wavelengths
 - Radio to X-Ray
- Searching for new objects
 - Galaxies, stars, etc
- Requires correlations across many catalogues
 - -ISO
 - Hubble
 - SCUBA
 - etc

The Problem

Locate and combine relevant data

Heterogeneous publishers

- Archive centres
- Research labs
- Heterogeneous data
 - Relational
 - XML
 - Files

Generic Data Integration Approach

- Heterogeneous sources
 - Autonomous
 - Local schemas
- Homogeneous view
 - Mediated global schema
- Mapping
 - LAV: local-as-view
 - GAV: global-as-view

P2P Data Integration Approach

- Heterogeneous sources
 - Autonomous
 - Local schemas
- Heterogeneous views
 - Multiple schemas
- Mapping
 - Between pairs of schema
 - Network of links
- Require common integration data model

Resource Description Framework (RDF)

- W3C standard
- Designed as a metadata data model
- Make statements about resources
- Contains semantic details
- Ideal for linking distributed data

Reasoning

- Infers knowledge from RDF(S) statements
 - Sub classing
- OWL: extends what can be expressed
 - Inverse predicates
 - Equivalence
 - etc

SPARQL

- Declarative query language
 - Select returned data
 - Graph or tuples
 - Attributes to return
 - Describe structure of desired results
 - Filter data
- W3C standard
- Syntactically similar to SQL

Querying RDF with SPARQL

Find the name of the galaxy which contains a star with the name The Sun

```
SELECT ?galName
WHERE {
    ?gal a IAU:Galaxy;
      #name ?galName .
    ?star a IAU:Star;
      #name ?starName;
      #foundIn ?gal .
FILTER REGEX(?
      starName, "The Sun")
}
```

Querying RDF with SPARQL

Find the name of the galaxy which contains a star with the name The Sun

?galName
The Galaxy
Milky Way

Integrating Using RDF

- Data resources
 - Expose schema and data as RDF
 - Need a SPARQL endpoint
- Allows multiple
 - Access models
 - Storage models
- Easy to relate data from multiple sources

Accessing Relational Sources as RDF

Data Dump

- Data stored as RDF
 - Original relational source is replicated
 - Data can become stale
- Native SPARQL query support
- Existing RDF stores
 - Jena
 - Seasame

On-the-fly Translation

- Data stored as relations
- Native SQL support
 - Highly optimised access methods
- SPARQL queries must be translated
- Existing translation systems
 - D2RQ/D2R Server
 - SquirrelRDF

System Hypothesis

It is viable to perform onthe-fly conversions from existing science archives to RDF to facilitate data access from a data model that a scientist is familiar with

Test Data

- SuperCOSMOS Science Archive (SSA)
 - Data extracted from scans of Schmidt plates
 - Stored in a relational database
 - About 4TB of data, detailing 6.4 billion objects
 - Fairly typical of astronomical data archives
- Schema designed using 20 real queries
- Personal version contains
 - Data for a specific region of the sky
 - About 0.1% of the data, ~500MB

Analysis of Test Data

- About 500MB in size
- Organised in 14 Relations
 - Number of attributes: 2 152
 - 4 relations with more than 20 attributes
 - Number of rows: 3 585,560
 - Two views
 - Complex selection criteria in view

Real Science Queries

Query 5

Find the positions and (B,R,I) magnitudes of all star-like objects within delta mag of 0.2 of the colours of a quasar of redshift 2.5 < z < 3.5

```
SELECT TOP 30 ra,
 dec, sCorMagB,
 sCorMagR2,
 sCorMagI
FROM ReliableStars
WHERE (sCorMagB-
 sCorMagR2 BETWEEN
 0.05 AND 0.80) AND
  (sCorMagR2-
 sCorMagI BETWEEN
 -0.17 AND 0.64)
```

Analysis of Test Queries

Query Feature	Query Numbers
Arithmetic in body	1-5, 7, 9, 12, 13, 15-20
Arithmetic in head	7-9, 12, 13
Ordering	1-8, 10-17, 19, 20
Joins (including self-joins)	12-17, 19
Range functions (e.g. Between, ABS)	2, 3, 5, 8, 12, 13, 15, 17-20
Aggregate functions (including Group By)	7-9, 18
Math functions (e.g. power, log, root)	4, 9, 16
Trigonometry functions	8, 12
Negated sub-query	18, 20
Type casting (e.g. Radians to degrees)	7, 8, 12
Server functions	10, 11

Expressivity of SPARQL

Features

- Select-project-join
- Arithmetic in body
- Conjunction and disjunction
- Ordering
- String matching
- External function calls (extension mechanism)

Limitations

- Range shorthands
- Arithmetic in head
- Math functions
- Trigonometry functions
- Sub queries
- Aggregate functions
- Casting

Analysis of Test Queries

Query Feature	Query Numbers
Arithmetic in body	1-5, 7, 9, 12, 13, 15-20
Arithmetic in head	7-9, 12, 13
Ordering	1-8, 10-17, 19, 20
Joins (including self-joins)	12-17, 19
Range functions (e.g. Between, ABS)	2, 3, 5, 8, 12, 13, 15, 17-20
Aggregate functions (including Group By)	7-9, 18
Math functions (e.g. power, log, root)	4, 9, 16
Trigonometry functions	8, 12
Negated sub-query	18, 20
Type casting (e.g. radians to degrees)	7, 8, 12
Server functions	10, 11

Expressible queries: 1, 2, 3, 5, 6, 14, 15, 17, 19

Experimental Setup

- Machine
 - Intel Core 2 Duo 2.4GHz
 - 2GB RAM
 - Windows XP
 - Java 1.5

- Software
 - MySQL 5.0.51a
 - D2RQ 0.5.1
 - SquirrelRDF 0.1

Only 4 queries completed within 2 hours

Performance Results

A New Approach

- Exploit query engines and data structure of underlying data sources
- Aid user query generation by explaining source data model in terms of known data model
- Data extracted in native model

Conclusions

RDF	Relational
Ragged data	Structured data
Small to medium data volumes	Large data volumes
Reasoning over the data	Extracting specific data

- SPARQL: Not expressive enough for science
- Query Converters: Poor performance
- Proposed new approach
 - RDF to understand data models
 - Native query engines for data extraction